Closing Wed: \quad HW_7A, 7B $(7.5,7.7,7.8)$ Note: Exam 2 is Thursday!!!
Covers 6.4, 6.5, 7.1-7.5, 7.7, 7.8
The exam will roughly look like this:
First 3 pages: 6 integrals (ALL types)
$4^{\text {th }}$ page: $\quad 6.5,7.7$ and/or 7.8
$5^{\text {th }}$ page: $\quad 6.4$
(8.1 Arc Length is NOT on our midterm)

A Brief Exam 2 Review

Integration!
Work.
Average Value.
Trapezoid, Simpson Rules.
Improper Integrals.

1. The 4 special methods

By parts:

$$
\begin{aligned}
& x e^{3 x}, x^{2} \cos (5 x) \\
& \frac{\ln (x-1)}{x^{2}}, x \tan ^{-1}(x)
\end{aligned}
$$

Trig:

$$
\begin{aligned}
& \sin ^{3}(x) \cos (x), \cos ^{4}(x) \\
& \sec ^{3}(2 x) \tan ^{3}(2 x)
\end{aligned}
$$

Trig sub:

$$
\begin{aligned}
& \frac{1}{x \sqrt{x^{2}-9}}, \frac{1}{\left(4-x^{2}\right)^{3 / 2}} \\
& \sqrt{x^{2}+6 x+10}
\end{aligned}
$$

Part Frac:

$$
\begin{aligned}
& \frac{x+2}{(x-1)(x-3)}, \frac{4 x}{(x-1)^{2}(x-3)} \\
& \frac{5}{x\left(x^{2}+4\right)}, \frac{x^{2}}{x+7}, \frac{x-3}{x^{2}+8 x+20}
\end{aligned}
$$

2. Substitution and Simplifying

$\operatorname{Try} u=\sqrt{x}, \mathrm{u}=$ inside, $\mathrm{u}=\mathrm{e}^{\mathrm{x}}, \mathrm{u}=$ trig.
Completing the square.
Trig facts.
Square identities, half-angle.
Triangle trick.
Random Integrals from Old Finals:

1. $\int \frac{1-x}{\sqrt{1-x^{2}}} d x$
2. $\int \frac{x^{2}-x+8}{x^{3}+4 x} d x$
3. $\int \tan ^{2} x \sec ^{4}(x) d x$
4. $\int_{1}^{3} \frac{1}{x^{2}+x^{3}} d x$
5. $\int \frac{1}{(1+\sqrt{x})^{3}} d x$
6. $\int 2 x \ln (x+5) d x$
7. $\int \sin (x) \sqrt{\cos (x)} d x$
8. Improper Integrals:
a) Rewrite as a limit!!
b) Integrate
c) Take limit

Random Improper Integrals:

1. $\int_{1}^{2} \frac{x}{\sqrt{x-1}} d x$
2. $\int_{-3}^{\infty} x e^{-x} d x$
3. $\int_{1}^{\infty} \frac{1}{\sqrt{x}(1+x)} d x$

4. Trapezoid/Simpson Rules

a) Set up integral, then compute width and label tickmarks.
b) Use formula.

Approximation Example:

1. Use Simpson's Method with $n=4$ subdivision to approximate the value of

$$
\int_{0}^{4} \sqrt{1+4 x^{4}} d x
$$

5. New Applications

a) Average value $=\frac{1}{b-a} \int_{a}^{b} f(x) d x$
b) Work $=\int_{a}^{b}($ Force $)($ Dist $)$

Step 1: Draw picture (start and end) Label clearly. Draw a typical subdivision.
Step 2: Find pattern for Force and Dist.
Step 3: Integrate.

Type 1: "Changing force"
Force changing as object is moved (leaky bucket, springs, given force). $f(x)=$ "force formula at x " Force $=\mathrm{f}(\mathrm{x})$, Dist $=\Delta \mathrm{x}$;
Work $=\int_{a}^{b} f(x) d x$

Type 2: "Stack of books" (chain, pumping)
Chain/Cable:
Given k = density $=$ force/length
if $x=0$ is labeled at the top.
then for any subdivision that makes
it to the top:
Force $=\mathrm{k} \Delta \mathrm{x}$, Dist $=\mathrm{x}$
Work $=\int_{a}^{b} k \mathrm{x} d x$
Pumping:
Given $\mathrm{k}=$ density $=$ force/volume
if top is $y=b$, then

$$
\text { Force }=k(\text { Area }) \Delta y \text {, Dist }=b-y ;
$$

$$
\text { Work }=\int_{a}^{b} k(\text { Area })(b-y) d y
$$

You need to have an basic understanding of how we label and find pattern to be able to adapt to changes in these problems!!

Applications from old tests:

1. Find the average value of $\cos ^{3}(x)$ on the interval 0 to $\pi / 2$.
2. A 1600 lb elevator is suspended by a 200 ft cable that weighs $10 \mathrm{lb} / \mathrm{ft}$. How much work is required to raise the elevator from the basement to the third floor, a distance of 30 ft ?
3. A rope is used to pull a bucket full of water up from a well that is 10 m deep. The rope has a total mass of 5 kg . The bucket has a mass of 11 kg . Find the total work done in lifting the bucket to the top (Recall: Accel. due to gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$)
4. A well is in the shape of a cylinder of radius 1 meter and depth 8 meters. It is half full of water. Find the word to pump all the water to the top. (Recall: Water weighs $9800 \mathrm{~N} / \mathrm{m}^{3}$)
5. The portion of the graph $y=x^{2} / 9$ between $x=0$ and $x=3$ is rotated about the y-axis to form a container. The container is full of a liquid that has density $100 \mathrm{lbs} / \mathrm{ft}^{3}$. Find the work required to pump all the liquid to the top of the container.
